تحدب تعمیم یافته روی خمینه های ریمانی

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

التصاق ها روی کلاف مماس تعمیم یافته از یک خمینه ی ریمانی

در این پایان نامه خواص التصاق های همورد تعریف شده در کلاف مماس تعمیم یافته از یک خمینه ی ریمانی و پایا نسبت به ساختار مختلط تعمیم یافته مورد بحث قرار می گیرد که توسط تبدیلات ‎ -b ‎میدان تولید شده اند. این موضوع در مورد خمینه های کیلری با جزییات بیشتری بررسی خواهد شد. در پایان یک تعمیم از مفهوم ساختار آماری به هندسه ی تعمیم یافته معرفی می شود و مثالی در این زمینه ارائه می گردد‎

تحدب تعمیم یافته ونتایج مرتبط

ابتداتابع میانگین را تعریف می کنیم. سپس تابع پیوسته f رادر نظر می گیریم وفرض می کنیم m و n هر دوتابع میانگین باشند، تحت شرایطی تابع f را m n -محدب می گوییم. در حالت خاص، وقتی که هردو میانگین، میانگین حسابی باشند تحدب معمولی خواهیم داشت. دراین پایان نامه شرایط لازم وکافی برای m n -محدب بودن یک تابع را ارائه می دهیم و رابطه بینm n -?محدب ها را بر حسب اینکه m وn میانگین های حسابی، هندسی و یا ه...

نامساوی های تغییراتی روی خمینه های ریمانی

در این تحقیق مسئله ی نابرابری های تغییراتی را روی خمینه ی ریمانی مطرح می کنیم و پس از آن به بررسی وجود و یکتایی جواب برای مسئله ی نابرابری های تغییراتی روی خمینه های ریمانی می پردازیم و مسئله ی باز مطرح شده در این زمینه را مورد بررسی قرار می دهیم. هم چنین ارتباط بین مسئله ی نابرابری تغییراتی و مسئله ی بهینه سازی مقید را بیان می کنیم. مفاهیم افزایندگی و یکنوایی را روی خمینه های ریمانی تعریف نمود...

دورهای تحلیلی روی خمینه های مختلط

سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023